Name: _

In the above proof, what is reason (2)?

- A. definition of angle bisector
- B. definition of midpoint
- C. definition of bisector
- D. definition of perpendicular bisector

Date: _____

2. Given: \overline{AD} is the perpendicular bisector of \overline{BC}

Prove: $\triangle ABC$ is isosceles

Statement	Reason
1. \overline{AD} is \perp bisector of \overline{BC}	given
2	def'n of ⊥ bisector
3	def'n of ⊥ bisector
4. $\overline{AD} \cong \overline{AD}$	
5. $\triangle ABD \cong \triangle ACD$	SAS
6. $AB = AC$	
7. $\triangle ABC$ is isosceles	

What is the reason for step 7?

A. $m \angle B = m \angle C$

- B. definition of isosceles (AB = AC)
- C. angles opposite = sides are =
- D. sides opposite = angles are =

3. Given: \overline{WY} is the angle bisector of $\angle XWZ$ $m \angle XYW = m \angle ZYW$

Prove: $\triangle WXY \cong \triangle WZY$	
--	--

Statement	Reason
\overline{WY} is the bisector of $\angle XWZ$	(1)
$m \angle XWY = m \angle ZWY$	(2)
WY = WY	(3)
$m \angle XYW = m \angle ZYW$	(4)
$\triangle WXY \cong \triangle WZY$	(5)

In the above proof, what is reason (5)?

- A. AAA B. AAS
- C. ASA D. SSS

- 4. Given: \overline{VT} bisects \overline{RW} \overline{RW} bisects \overline{TV}
 - Prove: $\triangle RSV \cong \triangle WST$

Statement	Reason
\overline{VT} bisects \overline{RW}	(1)
RS = WS	(2)
$m \angle RSV = m \angle WST$	(3)
\overline{RW} bisects \overline{TV}	(4)
TS = VS	(5)
$\triangle RSV \cong \triangle WST$	(6)

In the proof, what is the reason for (6)?

5. Given: $\overline{VW} \parallel \overline{ZY}$ WX = YX

Prove: $\triangle VWX \cong \triangle XYZ$

Statement	Reason
$\overline{VW} \parallel \overline{ZY}$	(1)
$m \angle W = m \angle Y$	(2)
WX = YX	(3)
$m \angle VXW = m \angle ZXY$	(4)
$\triangle VWX \cong \triangle ZYX$	(5)

In this proof, what is the reason for (5)?

- A. SAS B. ASA C. SSS D. HL
- 6. In the figure, $\angle C$ and $\angle F$ are right angles with $\overline{AB} \cong \overline{DE}$ and $\overline{AC} \cong \overline{DF}$. What postulate or theorem proves $\triangle DEF \cong \triangle ABC$?

- 7. A contractor built two triangular supports. He wants both triangular supports to be congruent. Which of these processes will enable the contractor to determine that these two triangular supports are congruent?
 - A. measure all three sides of each triangular support
 - B. measure all three angles of each triangular support
 - C. measure the smallest angle and the longest side in each triangular support
 - D. measure the smallest angle and the shortest and longest sides in each triangular support

page 2

8. Which equation describes the line with an undefined slope and containing the point (-3, -1)?

A. x = -3B. y = -3C. y = -3x - 1D. x = -1

- 9. A line has slope -1. It passes through the points Q(2, -n) and R(4, -3). What is the value of n?
 - A. -5 B. 1 C. 4 D. 5

10. What is the solution to the following system?

$$3y = 6 + 2x$$
$$8x = 12y - 24$$

A. (-6, -2) B. (-3, 0) C. (9, 8)

D. infinite number of solutions