Sample AP Calculus Questions from Problem-Attic

1 The Wonder Widget company sells widgets for \$79.99 each. The cost to manufacture widgets is given by the formula C = 61n + 1050, where *n* is the number of widgets sold. For what values of *n* will the company realize a profit?

a)
$$n \ge 8$$
 b) $n \ge 18$ c) $n \ge 33$ d) $n \ge 52$ *e) $n \ge 56$

2 Find the exact value of $\cos\left[\arctan\left(-\frac{2}{3}\right)\right]$.

a)
$$-\frac{\sqrt{65}}{4}$$
 *b) $\frac{3\sqrt{13}}{13}$ c) $-\frac{2\sqrt{13}}{13}$ d) $\frac{2\sqrt{13}}{13}$ e) $\frac{4\sqrt{5}}{5}$

3 Find the constant k so that the exponential function $y = 3e^{kt}$ passes through the points given on the graph.

4 What is the range of $\frac{x^2}{25} - \frac{y^2}{4} = 1$?

a) \emptyset *b) $y \in \mathbb{R}$ c) $y \le 5$ d) $|y| \ge 2$ e) $|y| \ge 5$

5 Find the range of $f(x) = \sqrt{3x - 4}$.

a) $(-\infty, -\frac{3}{4}]$ b) $(-\infty, -\frac{3}{4})$ c) $[0, \frac{3}{2})$ d) $[\frac{4}{3}, \infty)$ *e) $[0, \infty)$

Copyright (c) 2014 EducAide Software. All rights reserved. Reproduction of these questions is allowed only for non-commercial, educational purposes and if credited as follows: "Copyrighted material from www.problem-attic.com, used by permission."

6 If
$$g(f(x)) = 9 - 6x$$
, $f(x) = 3x - 2$, and $g(x) = ax + b$, then $g(x) =$ _____

a)
$$21 - 18x$$
 b) $21 - 12x$ c) $10 - 2x$ d) $10 - x$ *e) $5 - 2x$

- 7 What are the x-values of the points where the graphs of $y = 3\sin^2(4x) 7$ and $y = 5 \sec x$ intersect for $0 \le x < 2\pi$?
- 8 Answer using one of: EVEN, ODD, or NEITHER.

$$f(x) = \frac{x^2}{\sqrt{1+x^5}}$$
 is _____.

9 Find A so that
$$\lim_{x \to 2} \frac{x^2 + Ax - 10}{x - 2}$$
 exists.

 $\lim_{x \to 0} \frac{\sin^2 2x}{\sin^2 5x} =$

*a)
$$\frac{4}{25}$$
 b) ∞ c) $\frac{2}{5}$ d) \emptyset e) $\frac{25}{4}$

11
$$\lim_{x \to -\infty} \frac{2 - 2^x}{5 - 5^x}$$
 is
a) 1 b) 2 c) 0 d) $\frac{1}{5}$ *e) $\frac{2}{5}$

12 By using your graphics calculator, show that there exists a number such that 1 less than its square is the same as its square root. Between what 2 consecutive integers does this number lie?

13 The functions f and g have the values shown in the table and are differentiable.

If
$$A = f \cdot g$$
, then $A'(6) =$

a) 432 b) 0 *c) 389 d) -26 e) 6

	x	f	f'	g	g'
(0	5	1	-7	$\frac{1}{4}$
2	2	8	3	-5	1
4	4	14	9	-3	4
(6	26	27	-1	16

Copyright (c) 2014 EducAide Software. All rights reserved. Reproduction of these questions is allowed only for non-commercial, educational purposes and if credited as follows: "Copyrighted material from **www.problem-attic.com**, used by permission."

14 Let $f(x) = (x^2 - 1)^3$. Over what interval is the function decreasing?

a)
$$(1,\infty)$$
 *b) $(-\infty,0)$ c) $(0,\infty)$ d) $(-1,1)$ e) $(-1,0]$

- 15 Given $f(x) = \ln (x 3) 2 \cos x$. Find the first non-negative interval, [a, b], for which Rolle's Theorem applies and find the corresponding value of c.
- 16 Find a value which satisfies the conclusion of the Mean Value Theorem for Integrals, given:

$$\int_{4}^{10} \frac{8}{(x-2)^2} \, dx$$

a) $3\sqrt{2}$ b) $4\sqrt{2}$ c) $5\sqrt{3}$ *d) 6 e) -2

17 Find all points of inflection: $f(x) = x^3 - 12x$

a)
$$(0,0), (\pm\sqrt{12},0)$$
 *b) $(0,0)$ c) $(2,0), (-2,0)$
d) $(2,-16), (-2,16)$ e) $(0,0), (2,-16)$

18 Find all intervals on which the function $y = 8x^3 - 2x^4$ is concave upward.

- a) $(-\infty, 0)$ and $(2, \infty)$ b) $(-\infty, 24)$ and $(48, \infty)$ c) $(-\infty, 2)$ and $(8, \infty)$ *d) (0, 2) e) (24, 48)
- 19 Given that $f(x) = \int_0^x \sin(t^3) dt$ on the closed interval [0.5, 2], then f has a local maximum at x =_____.
- $20 \qquad \lim_{x \to 0} \frac{\cos ax + 1}{\cos bx 1} =$

Copyright (c) 2014 EducAide Software. All rights reserved. Reproduction of these questions is allowed only for non-commercial, educational purposes and if credited as follows: "Copyrighted material from **www.problem-attic.com**, used by permission."

21 Differentiate with respect to x: $y = e^{5-(2/x)}$

a)
$$\frac{dy}{dx} = e^{2/x^2}$$

b) $\frac{dy}{dx} = e^{5-(2/x)}$
c) $\frac{dy}{dx} = \frac{2}{x^2}e^{5-(2/x)}$
d) $\frac{dy}{dx} = -e^{5-(2/x)}$
e) $\frac{dy}{dx} = e^{4-(2/x)}$

22 Find the absolute maximum and absolute minimum of f on (0, 4].

$$f(x) = \frac{x^3 + 2x^2 - 9x}{x}$$

- a) Max: None, Min: (4, 60) b) Max: (0, -9), Min: (-1, -10)
- *c) Max: None, Min: (1, -6) d) Max: (0, -9), Min: (1, 6)
- e) Max: None, Min: (-1, -6)

23 If
$$f(x) = \frac{3x}{\cos x}$$
, then $f'(2.014) \approx$
a) 23.109 b) 23.518 *c) 22.685 d) 23.905 e) 24.157

24 The point (6, 2) lies on the graph of $f(x) = \frac{x-4}{x-5}$. Find the slope of a line tangent to the graph at that point.

- a) $-\frac{1}{36}$ *b) -1 c) 1 d) $-\frac{1}{9}$ e) 2
- 25 If $f(x) = \frac{4x^3}{3} 8x^2 + 16x + \frac{4}{3}$, then the equation of the tangent at the point of inflection is
 - a) 2x y + 8 = 0 b) 2x y = 0 c) y 2 = 0
 - d) 2x y 16 = 0 *e) y 12 = 0

Copyright (c) 2014 EducAide Software. All rights reserved. Reproduction of these questions is allowed only for non-commercial, educational purposes and if credited as follows: "Copyrighted material from **www.problem-attic.com**, used by permission."

26

Find the derivative of $y = \sqrt[3]{x^2 + x}$.

*a)
$$\frac{1}{3}(x^2 + x)^{-2/3}(2x + 1)$$
 b) $\frac{2}{3}(x^2 + x)^{-2/3}(2x - 1)$ c) $\frac{3}{2}(x^2 + x)^{2/3}(2x + 1)$
d) $\frac{x}{3}(x + 1)^{-2/3}(2x + 1)$ e) $\frac{1}{3}(x^2 + x)^{2/3}(2x + 1)$

27 Find $\frac{dy}{dx}$ given $y^2 - 3xy + x^2 = 7$.

a)
$$\frac{2x+y}{3x-2y}$$
 *b) $\frac{3y-2x}{2y-3x}$ c) $\frac{2x}{3-2y}$ d) $\frac{2x}{y}$ e) $\frac{2y-3x}{3y-2x}$

28 In the first quadrant, what is the slope of the tangent line to $x^2 + xy + y^2 = 3$ at the point where y = 1?

a) -2 b) -3 c) 3 *d) -1 e) 1

29 The graph shows the velocity of a kid in a candy store isle for *t* on [0, 6]. The object is furthest to the right when t =_____.

30 The position of road runner at any time t is given by $s = t^3 - \frac{9}{2}t^2 - 12t + 4$. When does a = 0?

a) -4, 1 *b) 1.5 c) 4, -1 d) 4 only e) 1 only

Copyright (c) 2014 EducAide Software. All rights reserved. Reproduction of these questions is allowed only for non-commercial, educational purposes and if credited as follows: "Copyrighted material from **www.problem-attic.com**, used by permission."

31 A clown is blowing up a bubble which is in the shape of a sphere. If it is inflated at the rate of $6 \text{ ft}^3/\text{min}$, what is the volume of the balloon when the radius is increasing at the rate of 3 in/min?

a)
$$\frac{2}{3}\sqrt{\frac{2}{\pi}}$$
 ft³ b) $\frac{\sqrt{3\pi}}{\pi^3}$ ft³ c) $\frac{\sqrt{2\pi}}{3\pi}$ ft³ *d) $8\sqrt{\frac{6}{\pi}}$ ft³ e) $\frac{2\sqrt{2\pi}}{3}$ ft³

32 Find the indefinite integral:
$$\int \frac{3 + 4x^{3/2}}{\sqrt{x}} dx$$

a)
$$\frac{3}{2}\sqrt{x} + 2x^2 + C$$

b) $-\frac{3}{2}x^{-3/2} + 4 + C$
c) $\frac{3}{2}x^{-3/2} + 2x^2 + C$
*d) $6\sqrt{x} + 2x^2 + C$
e) $3x^{-1/2} + 4x + C$

33
$$\int x\sqrt{4-9x^2} \, dx =$$

*a) $-\frac{1}{27}(4-9x^2)^{3/2} + C$ b) $-\frac{1}{18}(4-9x^2)^{3/2} + C$ c) $\frac{3}{2}(4-9x^2)^{3/2} + C$
d) $-\frac{4}{27}(4-9x^2)^{3/2} + C$ e) $\frac{2}{27}(4-9x^2)^{3/2} + C$

34 If
$$\frac{dy}{dx} = e^{7x}$$
, then $y =$
a) $7e^{\frac{1}{7}x} + C$ b) $\frac{1}{7}e^{\frac{1}{7}x} + C$ *c) $\frac{1}{7}e^{7x} + C$ d) $7e^{7x} + C$ e) $e^{7x} + C$
35 $\int \frac{x}{25 + x^4} dx =$
a) $\frac{1}{30} \arcsin \frac{x^2}{5} + C$ b) $\frac{1}{2} \arcsin \frac{x^2}{5} + C$ c) $\frac{1}{5} \arctan \frac{x^2}{5} + C$
d) $\frac{1}{10} \operatorname{arcsec} \frac{x^2}{5} + C$ *e) $\frac{1}{10} \arctan \frac{x^2}{5} + C$

36 Find a four decimal place approximation for
$$\int_{0.2}^{1} \frac{1}{\sqrt{x}} dx$$

a) 1.0232 *b) 1.1056 c) 1.1471 d) 1.9322 e) 2.4812

Copyright (c) 2014 EducAide Software. All rights reserved. Reproduction of these questions is allowed only for non-commercial, educational purposes and if credited as follows: "Copyrighted material from **www.problem-attic.com**, used by permission."

$$37 \qquad \frac{d}{dx} \int_{2}^{x^5} \frac{dt}{t+6} =$$

a)
$$\frac{1}{x+6}$$
 b) $\frac{5x^4}{x+7}$ c) $-\frac{5x^4}{x^5+6}$ *d) $\frac{5x^4}{x^5+6}$ e) $\frac{x^5}{x^5+6}$

38 The figure shows the graph of f', the derivative of the function f. The domain of the function f is $-10 \le x \le 10$.

For what value(s) does the function have a relative minimum?

*a)
$$\emptyset$$
 b) -3 c) 3 d) 0 e) 10

From the following graphs choose f.

40 Evaluate:
$$\int_{1}^{4} x e^{2x} dx$$

41 Given:

$$\frac{-x^2 + x - 26}{(x^2 + 10)(x - 2)} = \frac{Ax + B}{x^2 + 10} + \frac{C}{x - 2}$$

Decompose the given rational expression to find A, B, and C.

a)
$$A = -2$$
, $B = -3$, $C = 2$
b) $A = 2$, $B = 3$, $C = 2$
c) $A = 3$, $B = 0$, $C = -2$
e) $A = -1$, $B = 3$, $C = -2$
b) $A = 1$, $B = 3$, $C = -2$

Copyright (c) 2014 EducAide Software. All rights reserved. Reproduction of these questions is allowed only for non-commercial, educational purposes and if credited as follows: "Copyrighted material from **www.problem-attic.com**, used by permission."

42 Find the average value of $f(x) = \sin x$ on the interval $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$.

*a)
$$\frac{2\sqrt{2}}{\pi}$$
 b) $\frac{\sqrt{2}}{2}$ c) $\frac{1}{\pi}$ d) $\frac{\sqrt{2}}{\pi}$ e) $\frac{2}{\pi} - \sqrt{2}$

43 Find the area of the region bounded by $y = 9 - 9x^2$ and y = 0.

a) $\frac{19}{3}$ b) $\frac{16}{3}$ *c) 12 d) $\frac{25}{3}$ e) $\frac{221}{3}$

44 Find the area above y = 1 bounded by $y = 2 \sin x$ and y = 1, from $x = \frac{\pi}{4}0$ to $x = \frac{\pi}{2}$.

- a) $2\sqrt{3}$ units² b) $\frac{2\pi}{3}$ units² c) $2 + \frac{\pi}{4}$ units² e) $2\sqrt{3} - 2\pi$ units²
- **45** A pyramid with a square base and congruent triangular sides is 5 m high. If each cross section of the pyramid is a square parallel to the base, then what is the volume of the pyramid?

*a) $\frac{125}{3}$ m³ b) 25 m³ c) 125 m³ d) $\frac{25}{3}$ m³ e) 62.5 m³

46 Find the volume of the solid formed by revolving the region bounded by $y = \sin x$ and y = 0 in the interval $[0, \pi]$ about the x-axis.

a) π^3 *b) $\frac{\pi^2}{2}$ c) 2π d) π e) $\frac{3}{2}\pi$

47 A radioactive element has half-life of 50 days. What percentage of the original sample is left after 85 days?

a) 24.06% b) 25.00% c) 28.22% *d) 30.78% e) 37.50%

Copyright (c) 2014 EducAide Software. All rights reserved. Reproduction of these questions is allowed only for non-commercial, educational purposes and if credited as follows: "Copyrighted material from **www.problem-attic.com**, used by permission."

48 Consider the curve given by $x^3y^2 - x^5y = 10$.

a) Show that
$$\frac{dy}{dx} = \frac{5x^2y - 3y^2}{2xy - x^3}$$

- b) Find all points whose *x*-coordinate is 2 and write an equation for the tangent line at each of these points.
- c) Find the *x*-coordinate of each point on the curve where the tangent line is vertical.

49 Find:
$$\sum_{k=1}^{1000} 5^{k}$$

50 For any time $t \ge 0$, $x(t) = \sin^2(t)$ and $y(t) = \sin t$. Find $\frac{dy}{dx}$ at $t = \frac{\pi}{2}$.

a) -2 b) 2 c) $-\frac{1}{2}$ *d) $\frac{1}{2}$ e) π