Sample AP Calculus Questions from Problem-Attic

1 The Wonder Widget company sells widgets for $\$ 79.99$ each. The cost to manufacture widgets is given by the formula $C=61 n+1050$, where n is the number of widgets sold. For what values of n will the company realize a profit?
a) $n \geq 8$
b) $n \geq 18$
c) $n \geq 33$
d) $n \geq 52$
*e) $n \geq 56$

2 Find the exact value of $\cos \left[\arctan \left(-\frac{2}{3}\right)\right]$.
a) $-\frac{\sqrt{65}}{4}$
*b) $\frac{3 \sqrt{13}}{13}$
c) $-\frac{2 \sqrt{13}}{13}$
d) $\frac{2 \sqrt{13}}{13}$
e) $\frac{4 \sqrt{5}}{5}$

3 Find the constant k so that the exponential function $y=3 e^{k t}$ passes through the points given on the graph.
*a) $\frac{1}{3} \ln \frac{5}{3}$
b) $\ln \frac{5}{9}$
c) $\frac{2}{3} \ln \frac{5}{9}$
d) $\frac{1}{3} \ln \frac{5}{9}$
e) $\frac{2}{3} \ln \frac{5}{3}$

$4 \quad$ What is the range of $\frac{x^{2}}{25}-\frac{y^{2}}{4}=1$?
a) \varnothing
*b) $y \in \mathbb{R}$
c) $y \leq 5$
d) $|y| \geq 2$
e) $|y| \geq 5$

5 Find the range of $f(x)=\sqrt{3 x-4}$.
a) $\left(-\infty,-\frac{3}{4}\right]$
b) $\left(-\infty,-\frac{3}{4}\right)$
c) $\left[0, \frac{3}{2}\right)$
d) $\left[\frac{4}{3}, \infty\right)$
*e) $[0, \infty)$

6
If $g(f(x))=9-6 x, f(x)=3 x-2$, and $g(x)=a x+b$, then $g(x)=$ \qquad
a) $21-18 x$
b) $21-12 x$
c) $10-2 x$
d) $10-x$
*e) $5-2 x$
$7 \quad$ What are the x-values of the points where the graphs of $y=3 \sin ^{2}(4 x)-7$ and $y=5 \sec x$ intersect for $0 \leq x<2 \pi$?

8 Answer using one of: EVEN, ODD, or NEITHER.
$f(x)=\frac{x^{2}}{\sqrt{1+x^{5}}}$ is \qquad .

9 Find A so that $\lim _{x \rightarrow 2} \frac{x^{2}+A x-10}{x-2}$ exists.
$10 \quad \lim _{x \rightarrow 0} \frac{\sin ^{2} 2 x}{\sin ^{2} 5 x}=$
*a) $\frac{4}{25}$
b) ∞
c) $\frac{2}{5}$
d) \emptyset
e) $\frac{25}{4}$
$11 \lim _{x \rightarrow-\infty} \frac{2-2^{x}}{5-5^{x}}$ is
a) 1
b) 2
c) 0
d) $\frac{1}{5}$
*e) $\frac{2}{5}$

12 By using your graphics calculator, show that there exists a number such that 1 less than its square is the same as its square root. Between what 2 consecutive integers does this number lie?

13 The functions f and g have the values shown in the table and are differentiable.
If $A=f \cdot g$, then $A^{\prime}(6)=$
a) 432
b) 0
*c) 389
d) -26
e) 6

x	f	f^{\prime}	g	g^{\prime}
0	5	1	-7	$\frac{1}{4}$
2	8	3	-5	1
4	14	9	-3	4
6	26	27	-1	16

14 Let $f(x)=\left(x^{2}-1\right)^{3}$. Over what interval is the function decreasing?
a) $(1, \infty)$
*b) $(-\infty, 0)$
c) $(0, \infty)$
d) $(-1,1)$
e) $(-1,0]$

15 Given $f(x)=\ln (x-3)-2 \cos x$. Find the first non-negative interval, $[a, b]$, for which Rolle's Theorem applies and find the corresponding value of c.

16 Find a value which satisfies the conclusion of the Mean Value Theorem for Integrals, given:

$$
\int_{4}^{10} \frac{8}{(x-2)^{2}} d x
$$

a) $3 \sqrt{2}$
b) $4 \sqrt{2}$
c) $5 \sqrt{3}$
*d) 6
e) -2

17 Find all points of inflection: $f(x)=x^{3}-12 x$
a) $(0,0),(\pm \sqrt{12}, 0)$
*b) $(0,0)$
c) $(2,0),(-2,0)$
d) $(2,-16),(-2,16)$
e) $(0,0),(2,-16)$

18 Find all intervals on which the function $y=8 x^{3}-2 x^{4}$ is concave upward.
a) $(-\infty, 0)$ and $(2, \infty)$
b) $(-\infty, 24)$ and $(48, \infty)$
c) $(-\infty, 2)$ and $(8, \infty)$
*d) $(0,2)$
e) $(24,48)$

19 Given that $f(x)=\int_{0}^{x} \sin \left(t^{3}\right) d t$ on the closed interval [0.5,2], then f has a local maximum at $x=$ \qquad .
$20 \quad \lim _{x \rightarrow 0} \frac{\cos a x+1}{\cos b x-1}=$

21 Differentiate with respect to x : $y=e^{5-(2 / x)}$
a) $\frac{d y}{d x}=e^{2 / x^{2}}$
b) $\frac{d y}{d x}=e^{5-(2 / x)}$
*c) $\frac{d y}{d x}=\frac{2}{x^{2}} e^{5-(2 / x)}$
d) $\frac{d y}{d x}=-e^{5-(2 / x)}$
e) $\frac{d y}{d x}=e^{4-(2 / x)}$

22 Find the absolute maximum and absolute minimum of f on $(0,4]$.

$$
f(x)=\frac{x^{3}+2 x^{2}-9 x}{x}
$$

a) Max: None, Min: $(4,60)$
b) Max: $(0,-9)$, Min: $(-1,-10)$
*c) Max: None, Min: $(1,-6)$
d) Max: $(0,-9)$, Min: $(1,6)$
e) Max: None, Min: $(-1,-6)$

23 If $f(x)=\frac{3 x}{\cos x}$, then $f^{\prime}(2.014) \approx$
a) 23.109
b) 23.518
*c) 22.685
d) 23.905
e) 24.157

24 The point (6,2) lies on the graph of $f(x)=\frac{x-4}{x-5}$. Find the slope of a line tangent to the graph at that point.
a) $-\frac{1}{36}$
*b) -1
c) 1
d) $-\frac{1}{9}$
e) 2

25 If $f(x)=\frac{4 x^{3}}{3}-8 x^{2}+16 x+\frac{4}{3}$, then the equation of the tangent at the point of inflection is
a) $2 x-y+8=0$
b) $2 x-y=0$
c) $y-2=0$
d) $2 x-y-16=0$
*e) $y-12=0$

26 Find the derivative of $y=\sqrt[3]{x^{2}+x}$.
*a) $\frac{1}{3}\left(x^{2}+x\right)^{-2 / 3}(2 x+1)$
b) $\frac{2}{3}\left(x^{2}+x\right)^{-2 / 3}(2 x-1)$
c) $\frac{3}{2}\left(x^{2}+x\right)^{2 / 3}(2 x+1)$
d) $\frac{x}{3}(x+1)^{-2 / 3}(2 x+1)$
e) $\frac{1}{3}\left(x^{2}+x\right)^{2 / 3}(2 x+1)$

27 Find $\frac{d y}{d x}$ given $y^{2}-3 x y+x^{2}=7$.
a) $\frac{2 x+y}{3 x-2 y}$
*b) $\frac{3 y-2 x}{2 y-3 x}$
c) $\frac{2 x}{3-2 y}$
d) $\frac{2 x}{y}$
e) $\frac{2 y-3 x}{3 y-2 x}$

28 In the first quadrant, what is the slope of the tangent line to $x^{2}+x y+y^{2}=3$ at the point where $y=1$?
a) -2
b) -3
c) 3
*d) -1
e) 1

29 The graph shows the velocity of a kid in a candy store isle for t on [0,6]. The object is furthest to the right when $t=$ \qquad .
a) $1 *$ b) 3
c) 4
d) 6
e) 7

30 The position of road runner at any time t is given by $s=t^{3}-\frac{9}{2} t^{2}-12 t+4$. When does $a=0$?
a) $-4,1$
*b) 1.5
c) $4,-1$
d) 4 only
e) 1 only

31 A clown is blowing up a bubble which is in the shape of a sphere. If it is inflated at the rate of $6 \mathrm{ft}^{3} / \mathrm{min}$, what is the volume of the balloon when the radius is increasing at the rate of $3 \mathrm{in} / \mathrm{min}$?
a) $\frac{2}{3} \sqrt{\frac{2}{\pi}} \mathrm{ft}^{3}$
b) $\frac{\sqrt{3 \pi}}{\pi^{3}} \mathrm{ft}^{3}$
c) $\frac{\sqrt{2 \pi}}{3 \pi} \mathrm{ft}^{3}$
*d) $8 \sqrt{\frac{6}{\pi}} \mathrm{ft}^{3}$
e) $\frac{2 \sqrt{2 \pi}}{3} \mathrm{ft}^{3}$

32 Find the indefinite integral: $\int \frac{3+4 x^{3 / 2}}{\sqrt{x}} d x$
a) $\frac{3}{2} \sqrt{x}+2 x^{2}+C$
b) $-\frac{3}{2} x^{-3 / 2}+4+C$
c) $\frac{3}{2} x^{-3 / 2}+2 x^{2}+C$
*d) $6 \sqrt{x}+2 x^{2}+C$
e) $3 x^{-1 / 2}+4 x+C$
$33 \int x \sqrt{4-9 x^{2}} d x=$
*a) $-\frac{1}{27}\left(4-9 x^{2}\right)^{3 / 2}+C$
b) $-\frac{1}{18}\left(4-9 x^{2}\right)^{3 / 2}+C$
c) $\frac{3}{2}\left(4-9 x^{2}\right)^{3 / 2}+C$
d) $-\frac{4}{27}\left(4-9 x^{2}\right)^{3 / 2}+C$
e) $\frac{2}{27}\left(4-9 x^{2}\right)^{3 / 2}+C$

34 If $\frac{d y}{d x}=e^{7 x}$, then $y=$
a) $7 e^{\frac{1}{7} x}+C$
b) $\frac{1}{7} e^{\frac{1}{7} x}+C$
*c) $\frac{1}{7} e^{7 x}+C$
d) $7 e^{7 x}+C$
e) $e^{7 x}+C$
$35 \int \frac{x}{25+x^{4}} d x=$
a) $\frac{1}{30} \arcsin \frac{x^{2}}{5}+C$
b) $\frac{1}{2} \arcsin \frac{x^{2}}{5}+C$
c) $\frac{1}{5} \arctan \frac{x^{2}}{5}+C$
d) $\frac{1}{10} \operatorname{arcsec} \frac{x^{2}}{5}+C$
*e) $\frac{1}{10} \arctan \frac{x^{2}}{5}+C$

36 Find a four decimal place approximation for $\int_{0.2}^{1} \frac{1}{\sqrt{x}} d x$
a) 1.0232
*b) 1.1056
c) 1.1471
d) 1.9322
e) 2.4812

37

$$
\frac{d}{d x} \int_{2}^{x^{5}} \frac{d t}{t+6}=
$$

a) $\frac{1}{x+6}$
b) $\frac{5 x^{4}}{x+7}$
c) $-\frac{5 x^{4}}{x^{5}+6}$
*d) $\frac{5 x^{4}}{x^{5}+6}$
e) $\frac{x^{5}}{x^{5}+6}$

38 The figure shows the graph of f^{\prime}, the derivative of the function f. The domain of the function f is $-10 \leq x \leq 10$.

For what value(s) does the function have a relative minimum?
*a) \varnothing
b) -3
c) 3
d) 0
e) 10

39 The graph of the derivative of $f(x)$ is shown here:

From the following graphs choose f.
a)

*b)

c)

d)

e)

40 Evaluate: $\int_{1}^{4} x e^{2 x} d x$

41 Given:
$\frac{-x^{2}+x-26}{\left(x^{2}+10\right)(x-2)}=\frac{A x+B}{x^{2}+10}+\frac{C}{x-2}$
Decompose the given rational expression to find A, B, and C.
a) $A=-2, B=-3, C=2$
b) $A=2, B=3, C=2$
c) $A=3, B=0, C=-2$
*d) $A=1, B=3, C=-2$
e) $A=-1, B=3, C=-2$

42 Find the average value of $f(x)=\sin x$ on the interval $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$.
*a) $\frac{2 \sqrt{2}}{\pi}$
b) $\frac{\sqrt{2}}{2}$
c) $\frac{1}{\pi}$
d) $\frac{\sqrt{2}}{\pi}$
e) $\frac{2}{\pi}-\sqrt{2}$

43 Find the area of the region bounded by $y=9-9 x^{2}$ and $y=0$.
a) $\frac{19}{3}$
b) $\frac{16}{3}$
*c) 12
d) $\frac{25}{3}$
e) $\frac{221}{3}$

44 Find the area above $y=1$ bounded by $y=2 \sin x$ and $y=1$, from $x=\frac{\pi}{4} 0$ to $x=\frac{\pi}{2}$.
a) $2 \sqrt{3}$ units 2
b) $\frac{2 \pi}{3}$ units 2
c) $2+\frac{\pi}{4}$ units 2
*d) $2-\frac{\pi}{4}$ units 2
e) $2 \sqrt{3}-2 \pi$ units 2

45 A pyramid with a square base and congruent triangular sides is 5 m high. If each cross section of the pyramid is a square parallel to the base, then what is the volume of the pyramid?
*a) $\frac{125}{3} \mathrm{~m}^{3}$
b) $25 \mathrm{~m}^{3}$
c) $125 \mathrm{~m}^{3}$
d) $\frac{25}{3} \mathrm{~m}^{3}$
e) $62.5 \mathrm{~m}^{3}$

46 Find the volume of the solid formed by revolving the region bounded by $y=\sin x$ and $y=0$ in the interval $[0, \pi]$ about the x-axis.
a) π^{3}
*b) $\frac{\pi^{2}}{2}$
c) 2π
d) π
e) $\frac{3}{2} \pi$

47 A radioactive element has half-life of 50 days. What percentage of the original sample is left after 85 days?
a) 24.06%
b) 25.00%
c) 28.22%
*d) 30.78%
e) 37.50%
a) Show that $\frac{d y}{d x}=\frac{5 x^{2} y-3 y^{2}}{2 x y-x^{3}}$
b) Find all points whose x-coordinate is 2 and write an equation for the tangent line at each of these points.
c) Find the x-coordinate of each point on the curve where the tangent line is vertical.

49 Find: $\sum_{k=1}^{1000} 5$
a) 5
b) 25
c) 500
d) 1000
*e) 5000
$50 \quad$ For any time $t \geq 0, x(t)=\sin ^{2}(t)$ and $y(t)=\sin t$. Find $\frac{d y}{d x}$ at $t=\frac{\pi}{2}$.
a) -2
b) 2
c) $-\frac{1}{2}$
*d) $\frac{1}{2}$
e) π

