\qquad Date: \qquad

1. Which line is the graph of the inverse of $y=\frac{1}{2} x-2$?
A. line a
B. line b
C. line d
D. none of these

2. What mapping is applied to the unit circle $x^{2}+y^{2}=1$ to obtain the equation $\frac{x^{2}}{9}+81 y^{2}=4$?
A. $(x, y) \longrightarrow\left(6 x, \frac{9 y}{2}\right)$
B. $(x, y) \longrightarrow\left(\frac{x}{6}, \frac{2 y}{9}\right)$
C. $(x, y) \longrightarrow\left(\frac{x}{36}, \frac{4 y}{81}\right)$
D. $(x, y) \longrightarrow\left(6 x, \frac{2 y}{9}\right)$
3. What is the equation of the system that would give the graph shown?
A. $x y \geq-1$

$$
x^{2}+y^{2} \leq 9
$$

B. $x y \leq-1$

$$
x^{2}+y^{2} \leq 9
$$

C. $x y \leq 1$

$$
x^{2}+y^{2} \geq 9
$$

D. $x y \leq-1$

$$
x^{2}+y^{2} \geq 9
$$

4. The slope of a line segment is -3 . The line segment has endpoints $J(-3,9)$ and $K(2, \ell)$. What is the value of ℓ ?
A. -24
B. -6
C. $-\frac{2}{3}$
D. 12
5. In the figure, all angles are right and the measurements are in centimeters. What is the volume of the object?
A. $\quad 10360 \mathrm{~cm}^{3}$
B. $18200 \mathrm{~cm}^{3}$
C. $19500 \mathrm{~cm}^{3}$
D. $22500 \mathrm{~cm}^{3}$

6. The line represented by $y=3 x-4$ and a line perpendicular to it intersect at $R(0,-4)$. What is the equation of the perpendicular line?
A. $y=-\frac{1}{3} x$
B. $y=-\frac{1}{3} x-4$
C. $y=-3 x+4$
D. $y=-3 x-4$
7. In the diagram, the ellipse is a transformation of the unit circle $\left(x^{2}+y^{2}=1\right)$. What is the expansion that was used?

A. $(x, y) \longrightarrow(x, 2 y)$
B. $(x, y) \longrightarrow(2 x, y)$
C. $(x, y) \longrightarrow\left(\frac{x}{2}, y\right)$
D. $(x, y) \longrightarrow\left(\frac{x}{4}, y\right)$
8. In the figure, $\overline{A C}$ and $\overline{D B}$ bisect each other, and $\overline{A D} \cong \overline{C B}$. What postulate or theorem can be used to prove $\triangle A D P \cong \triangle C B P$?
A. ASA
B. $\mathrm{H}-\mathrm{L}$
C. SAS
D. SSS

9. Given the figure with $\overline{A B} \perp \overline{B E}, \overline{E F} \perp \overline{B E}$, $\angle 1 \cong \angle 2, \angle 3 \cong \angle 4$, and $\overline{B D} \cong \overline{E C}$. What postulate or theorem would prove $\triangle B C G \cong \triangle E D H$?
A. AA
B. $\mathrm{H}-\mathrm{L}$
C. SAS
D. SSS

10. If r varies directly as t^{2}, and $r=90$ when $t=3$, then what is r when t is 8 ?
A. 80
B. 160
C. 450
D. 640
11. If the equation of the graph shown is written in the form $y=a \cos b(x-c)+d$, where $a>0$, what is the value of c ?
A. $-\frac{\pi}{12}$
B. $-\frac{\pi}{6}$
C. $\frac{\pi}{6}$
D. π

12. What is $12 x^{2} y+35 x^{3} y^{2}$ divided by $15 x^{2}$?
A. $\frac{4}{5} y+\frac{7}{3} x y^{2}$
B. $\frac{4}{5} y+\frac{7}{3} x^{3}$
C. $\frac{4}{5} x^{2} y+\frac{7}{3} x y$
D. $\frac{4}{5} x^{3} y^{3}$
13. Given this matrix equation:

$$
\left[\begin{array}{l}
j \\
k
\end{array}\right]+\left[\begin{array}{c}
2 k \\
-5
\end{array}\right]=\left[\begin{array}{c}
20 \\
9
\end{array}\right]
$$

What is the sum $j+k$?
A. -24
B. 20
C. 27
D. 34
14. Which of the following graphs represents the solution to $\left|\frac{3}{4} x-\frac{3}{4}\right|>3$?

B.

C.

D.

15. What is the value of the $\cos m \angle X Z Y$?
A. $\frac{1}{8}$
B. $\frac{1}{4}$
C. $\frac{1}{2}$
D. $\frac{11}{16}$

16. For what value(s) of θ is the expression $\frac{\sin ^{2} \theta}{1+\cos ^{2} \theta}$ undefined?
A. 90°
B. 180°
C. 270°
D. never
17. Using the smallest grid squares as the unit of area, what is the area of the hexagon?
A. 32
B. 43
C. 47
D. 48.5

18. Two angles are supplementary. If the measure of the larger angle is 40 more than 6 times the smaller, what is the measure of the smaller angle?
A. 20°
B. 28°
C. $31 \frac{3}{7}^{\circ}$
D. 160°
19. In parallelogram $E F G H$, if $H F=5 x+18$ and $H I=3 x+4$, what is $I F$?
A. 10
B. 34
C. 68
D. 136

20. The point $(-2,4)$ is moved using the translation $(x, y) \rightarrow(x+4, y-2)$. What are the coordinates of the new point?
A. $(-6,-2)$
B. $(2,2)$
C. $(2,4)$
D. $(4,4)$
1.

Answer: B
2.

Answer: D
3.

Answer: B
4.

Answer: B
5.

Answer: C
6.

Answer: B
7.

Answer: B
8.

Answer: D
9.

Answer: C
10.

Answer: D
11.

Answer: C
12.

Answer: A
13.

Answer: B
14.

Answer: C
15.

Answer: D
16.

Answer: D
17.

Answer: C
18.

Answer: A
19.

Answer: B
20.

Answer:
B

Name: \qquad Date: \qquad

1. Which line is the graph of the inverse of $y=2 x+1$?
A. line a
B. line c
C. line d
D. none of these

2. What mapping is applied to the unit circle $x^{2}+y^{2}=1$ to obtain the equation $25 x^{2}+y^{2}=4$?
A. $(x, y) \longrightarrow\left(\frac{2 x}{5}, \frac{y}{2}\right)$
B. $(x, y) \longrightarrow\left(\frac{4 x}{25}, \frac{y}{4}\right)$
C. $(x, y) \longrightarrow\left(\frac{2 x}{5}, 2 y\right)$
D. $(x, y) \longrightarrow\left(\frac{x}{2}, \frac{2 y}{5}\right)$
3. What is the equation of the system that would give the graph shown?
A. $x^{2}+y^{2} \leq 9$

$$
y \geq x^{2}-1
$$

B. $x^{2}+y^{2} \leq 9$
$y \leq x^{2}-1$
C. $x^{2}+y^{2} \leq 9$
$y \geq x^{2}+1$

D. $x^{2}+y^{2} \geq 9$
$y \leq x^{2}-1$
4. The slope of a line segment is 4. The line segment has endpoints $G(2,3)$ and $H(4, d)$. What is the value of d ?
A. 2.5
B. 5
C. 8
D. 11
5. In the figure, all angles are right and the measurements are in centimeters. What is the volume of the object?
A. 680 units 3
B. 880 units 3
C. 960 units 3
D. 990 units 3

6. The line represented by $y=\frac{1}{2} x-1$ and a line perpendicular to it intersect at $R(2,0)$. What is the equation of the perpendicular line?
A. $y=2 x+1$
B. $y=-2 x-1$
C. $y=-2 x+4$
D. $y=-2 x$
7. In the diagram, the ellipse is a transformation of the unit circle $\left(x^{2}+y^{2}=1\right)$. What is the expansion that was used?

A. $(x, y) \longrightarrow\left(\frac{5 x}{2}, y\right)$
B. $(x, y) \longrightarrow\left(\frac{25 x}{4}, y\right)$
C. $(x, y) \longrightarrow(2 x, 5 y)$
D. $(x, y) \longrightarrow\left(\frac{4 x}{25}, y\right)$
8. In the figure, $\overline{P R} \cong \overline{P S}$ and $\overline{R Q} \cong \overline{S Q}$. What postulate or theorem can be used to prove $\triangle P R Q \cong \triangle P S Q$?
A. ASA
B. $\mathrm{H}-\mathrm{L}$
C. SAS
D. SSS

9. Given the figure with $\angle P \cong \angle S, \overline{P U} \cong \overline{S R}$, $\overline{P R} \cong \overline{U S}$, and $\overline{Q U} \| \overline{T R}$. What postulate or theorem would prove $\triangle P U Q \cong \triangle S R T$?
A. AA
B. ASA
C. SAS
D. SSS

10. If a varies directly as b^{2}, and $a=48$ when $b=4$, then what is a when b is 7 ?
A. 128
B. 131
C. 147
D. 165
11. Given the graph of $y=a \sin b(x+c)+d$ where $a>0$, what is the value of c ?
A. 1
B. $-\frac{\pi}{4}$
C. 0
D. $\frac{\pi}{4}$

12. What is $12 x y^{2}+9 x^{2} y-3 x y$ divided by $18 x$?
A. $\frac{2}{3} y^{2}+\frac{1}{2} x y-\frac{1}{6} y$
B. $\frac{1}{2} x y^{2}$
C. $\frac{2}{3} x y^{2}+\frac{1}{2} x^{2} y-\frac{1}{6} y$
D. $\frac{4}{3} x^{5} y^{4}$
13. Given this matrix equation:

$$
\left[\begin{array}{c}
2 r \\
7
\end{array}\right]+\left[\begin{array}{c}
3 s \\
-4 r
\end{array}\right]=\left[\begin{array}{c}
16 \\
5
\end{array}\right]
$$

What is the sum $r+s$?
A. $-3 \frac{1}{2}$
B. 5
C. $5 \frac{1}{2}$
D. 10
14. Which of the following graphs represents the solution to $|2-0.5 x| \leq 1.5$?
A.

B.

C.

D.

15. What is the value of $\cos \angle P Q R$?
A. $-\frac{1}{4}$
B. $\frac{3}{16}$
C. $\frac{7}{16}$
D. $\frac{29}{16}$

16. For what value(s) of θ is the expression $\frac{\sin ^{2} \theta}{1-\sin ^{2} \theta}$ undefined?
A. 45° and 90°
B. 90° and 270°
C. 180°
D. never
17. Using the smallest grid squares as the unit of area, what is the area of the pentagon?
A. $33 \frac{1}{2}$
B. 34
C. $36 \frac{1}{2}$
D. 37

18. Two angles are supplementary. If the measure of the larger angle is 20 less than 4 times the smaller, what is the measure of the smaller angle?
A. 40°
B. 50°
C. 100°
D. 140°
19. In rectangle $A B C D$, if $A C=12 x-8$ and $B D=9 x+4$, what is $B D$?
A. 4
B. 12
C. 26
D. 40

20. A point is moved using the translation $P(3,-2)$ to $P^{\prime}(1,1)$. What are the coordinates of the image of $Q(2,-3)$ under the same translation?
A. $(-1,2)$
B. $(0,0)$
C. $(1,-2)$
D. $(2,-4)$
1.

Answer: A
2.

Answer: C
3.

Answer: A
4.

Answer: D
5.

Answer: B
6.

Answer: C
7.

Answer: C
8.

Answer: D
9.

Answer: B
10.

Answer: C
11.

Answer: \quad C
12.

Answer: A
13.

Answer: C
14.

Answer: C
15.

Answer: A
16.

Answer: B
17.

Answer: B
18.

Answer: A
19.

Answer: D
20.

Answer: A
,
 x_{1}

